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Predictability in Deterministic Theories 
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A mathematical model for the general notion of a deterministic physical theory 
is introduced, and incompleteness results analogous to the halting theorem for 
Turing machines are demonstrated for this model. The discussion is not limited 
to algorithmic systems. 

1. INTRODUCTION 

Suppose that we have a deterministic physical theory with an associ- 
ated set of physical systems to which the theory applies. To what extent is 
it possible that one of these physical systems governed by the theory can 
carry out computations within the theory? The aim of this article is to give 
a partial answer to this question. The results obtained can be considered as 
analogous to the unsolvability of the halting problem for Turing machines 
(Davis, 1958) or to the G6del incompleteness theorem for formal number 
theory (Shoenfield, 1967). Due to the nonrecursive nature of the discussion, 
it should maybe most of all be considered as analogous to the problems 
related to the Tarski truth definition (Tarski, 1956). 

It is known that a number of mathematical problems in physics are 
undecidable within standard axiom systems of mathematics (for instance, 
ZFC). Da Costa and Doria (1991) use Richardson's theorem (Richardson, 
1968) to establish undecidability results about classical mechanics. One can 
say that results of this type concern incompleteness phenomena in physics 
inherited from mathematics via the concrete mathematical models actually 
used in today's physics. In contrast, my approach in this article is general 
and direct: no known incompleteness results from mathematics are used, 
instead analogous results are proven (from scratch) for a new mathematical 
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structure intended to model the concept of  a deterministic physical theory 
in general. 

I begin in Section 3 with an informal discussion of  calculations in 
classical mechanics. The formal development starts in Section 4. 

2. NOTATION 

N means { 1, 2, 3 . . . .  }. By an initial segment of  N will be meant a set 
A _ N  such that if a e A  and b < a ,  then b e A  also, for all a, b e N .  Note 
that both 0 and N are initial segments of  N. If  f is a mapping, D o m ( f )  and 
I r a ( f )  will denote the domain and image of  f ,  respectively. So 
f ( D o m ( f ) )  = I m ( f ) .  I put R * =  R u { - o o ,  oo}, the usual two-point com- 
pactification of  R. The notation [0, oo] always refers to the corresponding 
closed interval in R*. We take R ~ to mean R x R x �9 �9 �9 i.e., the countable 
infinite product of R with itself. 

3. THE CONCEPT OF CALCULATION 

Consider classical mechanics. Assume that we have a system S given 
by 

p2 
S: H(p ,  q) = 2---m 

p(O) = Po, q(O) = qo 

where P0 and qo are given real numbers. Consider also the system C defined 
by 

(pc) 2 C: Hc(pc, qc) = 
2m 

p,.(O) = - P o ,  qc(O) = qo 

Then we have, according to the theory in question, the equivalence 

lim q(t) exists ,~  lim q~.(t) exists 
t ---~ oo t ~ o o  

In this situation, one can take the point of  view that the system C is 
calculating whether or not the limit of  q(t) for the system S exists when 
t--, oo. Alternatively, let C be given by 

C: Hc(p,., qc) - (p,.)2 
2m 

f l  if p ( O ) = O  
pc(O) = ~0 otherwise 

q~(O) = 0 



Predictability in Deterministic Theories 1087 

Then we have 

lira q(t) exists ~ lira qc(t) does not exist 
t ~ c O  t ~ r X 3  

In this case we also have 

lim q(t) exists =~ qc(to) to 
t - ~ o o  / ' n  

lira q(t) does not exist =~ qc(to) = 0 

for all to > 0. Thus in this example (as well as in the first one) it is possible 
to read out the "answer" from the calculating system already after a finite 
lapse of time. 

Notice that the concept of calculation, defined via arbitrary equiva- 
lences in the way we are hinting about now, will naturally be somewhat 
different from the usual algorithmic concept. 

The calculating systems C considered so far have only been required to 
answer one yes/no question about the input system S. The simplest 
situation with two questions involved arises when we consider one yes/no 
question along with its negation. Still referring to the input system S, we 
can ask the following two questions: 

1. Does lim,~ ~o q(t) exist? (Yes or No) 
2. Is it true that lim,~ oo q(t) does not exist? (Yes or No) 

When we have two questions negating each other like this, we rule out the 
trivial possibility of S calculating its own behavior by direct simulation. 
But still we can easily find a system capable of answering both questions, 
for instance, 

1 
C: H,.(p~,p2;q~,q2)=~m(p~ +p 2) 

p~(0) =P0, q,(0) = q2(0) = 0 

01 if question 1 is to be answered 
p2(0) = if question 2 is to be answered 

Here the answer from C can be taken as no if the statement 

lim~_, oo q~ (t) exists ~ lim~ _, o~ q2 (t) exists 

is true, and yes otherwise ( ~  is exclusive-or). 
It is clear that if the notion of "calculating system" is to have any 

interesting meaning, the Hamiltonian of the "system" should not be 
allowed to vary with the input system (and question) in an arbitrary way. 
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A simple and plausible solution is to require the Hamiltonian of the 
calculating system C to be fixed, while the initial conditions of  C are 
allowed to depend on the input. Further, when considering input systems S 
with many degrees of  freedom (Pl,  P2 . . . .  ; ql, q2 . . . .  ), it is not necessary 
to let the number of  initial values of  C coding information about  S increase 
without bounds. Information-theoretically, one input is sufficient, but it is 
more tidy to use two: one initial value coding the Hamiltonian Hs of  the 
input system along with the question to be answered, and one coding the 
initial values Si(O), i = 1, 2, 3 . . . . .  Here Si(t) is meant to denote either a 
specific coordinate or a specific momentum as a function of  time; we may, 
for instance, agree that Sl(t  ) =pl ( t ) ,  $2(/)=ql(t),  S3(t)=p2(t), S4(t)= 
q2(t), and so on. In this sort of  scheme we can agree that S;(0) = 0 if the 
number of degrees of  freedom in S is less than i/2. 

Let us consider an example. A natural way of  mapping R ~ bijectively 
into R is to take the composition of a map A: R ~ [ 0 ,  l) ~176 with a map 
v: [0, 1)~176 [0, l) shuffling decimals. For  the sake of  simplicity (see later), 
I will use base 2 decimal expansions (without infinite sequences of  repeat- 
ing ones, of  course). Let us define 2: R ~ [0, 1) by coding minus sign by 01, 
repeating each digit in integer parts twice, coding decimal point by 01, and 
keeping decimals. This gives, for example, 

2 (10 .0001 . . . )  = 0.1100010001.. .  

2 ( - 1 . 1 0 1 . . . )  = 0.011101101 . . .  

2 (0 .11100 . . . )  =0 .000111100 . . .  

Let A: R ~  [0, 1) ~ be the corresponding map acting componentwise by 2. 
To define v, let P=(Pl ,P2  . . . .  )~[0, 1) ~176 be given. Define v(p) as the 
number in [0, 1) constructed as follows: 

�9 Write pt on every second decimal. 
�9 Write P2 on every second of  the remaining decimals. 
�9 Write P3 on every second of  the now remaining decimals. 

And so forth. Example: With Pt =0-1100011000111 . . . .  P2=  
0.0010111 . . . .  P3 = 0.101 . . . .  P4 = 0.00 . . . .  and P5 = 0.1 . . . .  we get 

v(p) = 0.10110000011010010101111011... 

Let X: R~ 1) be defined by X = v o A. 
Using X as input code, we can now put up a quite general (but 

somewhat informal) scheme for a special type of  calculating system C 
within classical mechanics. First of  all, the Hamiltonian Hc and the initial 
values C;(0) for i > 3 shall be fixed for all input systems S. Information 
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about S can be given via the first two initial values of C as follows: 

C~ (0) = some real number (Hs  and the question coded here) 

c~(o) = z ( S ( O ) )  

The calculation made by C can take as long as it wishes, but we must 
assume that the answer lies encoded in the state C(t) = (Cl(t),  C 2 ( t ) , . . .  ) in 
the limit t ~ ~ .  For instance, C might use the existence/nonexistence of 
one of its component limits, say limt_o~C3(t), as output signal. It could 
then, for example, work as follows: 

limt~ o~ C3(t) exists: The answer is yes 

l im,_~C3(t) does not exist: The answer is no 

Later, when we make the formal definition of a calculating system, we shall 
be more general about this. We will then only assume that the answer is 
algorithmically inferable from complete information about which limits 
lim, ~ ~ Ci (0 exist, and the values of  those existing (cf. the example above 
where we used ~ in defining the output signal). 

4. DETERMINISTIC THEORIES 

The central properties of a deterministic theory as considered here are 
the following: 

1. Given a point in time t, the state of a system governed by the 
theory can, from the point of view of the theory, be completely specified by 
a finite or countably infinite number of information bits. For example, the 
bits may code the decimal expansions of a collection of real numbers, the 
coefficients of  some sort of  series expansion, or a description written in 
plain English. 

2. I f  the states of two systems are equal at time t, then their states are 
equal for all times t '  > t. 

These properties form the physical motivation for the formal definition 
of deterministic theory given below. First we need some language. 

Consider the alphabet E = {0, 1, d}, and let 

~ * = Z x E x T . . x  . . . .  Y. ~ 

The elements of t~* are infinite words in the alphabet I1. The ith coordinate 
of an element a eft* will be denoted by a;, for i = 1, 2, 3 . . . . .  The element 
a itself will be written a = a l a 2 a  3 . . . .  Example: a = l d d O l l O . . ,  gives 
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a t =  1, a 2=  d, a 3= d, and so forth. Let 

f~= {wef~*lwiv~d for all ieN} 

The ith coordinate a; of an element a ef~ will sometimes be called the ith 
bit of a. We define a topology on f~ by declaring that a subset U _  f~ is a 
neighborhood of aef~ iff there is an n e N  such that V~ _ U, where the set 
V~ is defined by 

V] = {bef~[b i=  a i for all i < n} 

It is trivial to check that this does indeed define a topology on f~, and that 
in this topology the sets V[ are open for all a e f l  and n eN .  We have a 
canonical surjection Dec: f~ ~ [0, 1] given by 

[Dec(a)[ i = a i 

for i eN,  where [Dec(a)[ i is interpreted as ith decimal in a base 2 decimal 
expansion for Dec(a). Note that Dec is not injective (infinite sequences of  
repeating ones may occur in ~). 

Lemma I. The map Dec: f ~ [ 0 ,  1] is continuous. 

Proof. Let Dec(a) e[0, 1] and let e > 0 be given. Choose n ~N such that 
2-n < c. Then for all b e V~ we have [Dec(b) - Dec(a)[ < c. �9 

Let G: [0, oo] ~f~*,  and let i eN.  If  there is an L e E  and an ae[0 ,  oo) 
such that G( t ) ;=  L for all te[a, oo), we write lim,_ ooG(t);= L. If  there are 
no such L and a, we say that lim,_ o~ G(t) i does not exist. 

Definition 1 (oo-maps). A map S: [0, oo] ~f~* will be called an oo- 
map if S (0 )e f ]  and the following conditions are satisfied for all ieN:  

If  l imt_,o~S(t)i= L, then S ( ~ ) ;  = L. 
If  lim,~ooS(t) ~ does not exist, then S ( ~ ) ; =  d. 

Notice that a given map So: [0, ~ ) ~ f ~ *  with S(0)~f~ can always be 
extended to a unique ~ - m a p  S: [0, ~ ]  ~f~*.  The difference between So 
and S is simply that S contains some extra explicit information about the 
limits lim,_ 00 So(t) ~. 

Let Tur denote the set of  all one-taped, one-sided Turing machines 
working over the alphabet E. By an input to M is meant an element aef~*. 
It is always understood that the machines M e  Tur start their computations 
with their head at tape position 1. Given M ~ T u r  and w~f]*,  we define a 
map M[w]: [0, ~ ]  ~ f l *  as follows: 

(i) M [ w ] ( t ) = a i  for all tE[i, i +  1), where a i is the tape of M after i 
operations given input w, for i = 0, 1, 2, 3 . . . . .  Note that M[w](0)=  
ao = w. 
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(ii) For each ieN,  let [M[w](oo)]i= L if limt_~ oo[M[w](t)] i= L, and let 
[M[w]( oo)]; = d if lim, ~ ~ [M[w](t)] ~ does not exist. 

The map M[w] is then an m-map. It will be called the development of 
M given input w. When I say that M[w] halts, I mean that M halts with 
input w. This is equivalent to 

(3n eN)(M[w](t) = M[w](t') for all t, t '  > n) 

A machine M e Tur is called acceptable if M halts with 0 or 1 at the 
head position (i.e., has output 0 or 1) for all inputs weft*.  We define 

Tur A = {Me Tur]M is acceptable} 

I will use the notation M(w) to denote the output of M e  TurA when it gets 
weft* as input. The output M(w) should not be confused with the 
development M[w] as defined earlier. 

Definition 2 (Deterministic Theories). A deterministic theory T is a pair 
T = (Fr ,  H), where 

F r is a family of m-mappings S: [0, oo] --*~* 
H is an arbitrary mapping with domain of definition F r  

such that the following condition (called the determinism axiom) is satisfied 
for all S, S ' e F  T and all toe[0, oo]: 

If  S(to) = S'(to) and H(S) = H(S'), 

then S(t) = S'(t) for all te[to, oo] 

In this definition, the parameter t e[0, oo] can be considered as time. 
The elements S e F r  are called systems. The reason for using m-maps is 
that it is convienient to have information about limit behavior coded in an 
easily accessible manner. In most applications (cf. Examples 1-3 below) 
the maps S e F r  will satisfy S( t )ef t  for all re[0, m). Then S ( ~ ) ~ = d  iff 
l im,_~ S(t) i does not exist. The symbol d is chosen to rhyme with "does 
not have a value." 

Given a deterministic theory T = (Fr ,  H), we denote the image of H 
by Ham(T), i.e., H ( F r )  = Ham(T). We often write Hs instead of H(S) for 
S e F t .  Frequently Hs is called the Hamiltonian of the system S, in analogy 
with classical mechanics. Note, however, that our use of the word "system" 
here corresponds (via interpretation) to the time development of a system in 
the usual sense of the word. The map H is included in the definition of 
deterministic theory only to make the process of representing concrete 
theories as deterministic theories easier (cf. Examples 1-3 below). The map 
is not necessary from a theoretical point of view. 
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By the determinism axiom, the mapping 

~br: F r  ~ Ham(T) x D 

defined by c~r(S ) = (Hs, S(0)) is an injection. Its inverse (defined on the 
image of  ~br) will be denoted by tkr  I . 

The reason for topologizing f is that we sometimes want to think of  
an element w ~ as representing a point in space, for instance, via the map 
Dec. In this context, the definition below has a natural geometrical mean- 
ing. 

Definition 3. A deterministic theory T = (F r ,  H)  is called closed if for 
each fixed S ~ F r  the set 

{a = H ( S )  ^ S'(O) = a)}  

is a closed subset of  ft. 

Example I (Classical mechanics). In the spirit o f  Section 3, we can 
define a classical theory as a pair | = (Clas, h), where Clas is a nonempty 
set consisting of  mappings s: [0, ~ )  --*R ~ and h: s ~-~ ham(s) is a map 
defined on Clas. (To avoid ambiguities in notation, we now denote the 
elements of  Clas by small Latin letters instead of  capital ones.) We can 
represent 19 as a deterministic theory as follows. For  each s ~ Clas, define an 
associated map S: [0, ~ ]  ~ ft* by extending t ~ Dec-  l(X(s(t)) ) to an ~ -  
map, where s(t) is represented with the base 2 decimal expansion where no 
infinite sequence of  repeating ones occurs. Define T = (F r , / - / )  by putting 
Fr = {S[seClas} and Hs = ham(s) for all SeFr .  We then have a canonical 
bijection r F r ~ Clas given by S ~ s. 

Example 2 (Turing machines). Let D be the set of  all Turing machine 
developments starting in f~, i.e., 

D = {M[w]lM~Tur and w~ft} 

Let F r e D ,  and let H: F r ~ T u r  be such that for all M , M ' e T u r  the 
following is satisfied: If  H(M[w])=M' ,  then M'[w] =M[w].  Then 
T = (F r ,  H)  is a closed deterministic theory. Note that Turing machines 
play the role of  Hamiltonians here. 

Example 3 (Billiard balls). Suppose we are given an infinite array of  
cells 

C I ,  C 2 ~ , C  3 ,  �9 . . 

each of  which can contain a billiard ball or be empty. Then the state of  the 
array at a given instant of  time t can be considered as a point w(t)eft,  
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where for each ieN: 

w(t);={10 ifthereiSaotherwise, b a l l i n c e l l i a t t i m e t  

Suppose also that we are given a set X of mechanical devices (not 
necessarily algorithmic) that can move the billiard balls in the array around 
in such a way that the state w(t) of the array at all times t >- 0 is uniquely 
determined by the state w(0) at time t = 0 and the system h eX  operating 
on the array. Assuming discrete time, we can represent this situation as a 
deterministic theory exactly as we did with Turing machines. For each 
h eX, let h[w]: [0, ~ ]  ~ f~* be the oo-map corresponding to the situation 
where h starts with w~fl  as input. Let D = {h[w]]h~X and w~f~}, let 
F r ___ D, and let H: F r  ~ X be such that if H(h[w]) = h', then h'[w] = h[w]. 
Then T = (F r, H) is a closed deterministic theory. 

In connection with Example 3, it should be mentioned that the billiard 
ball computer is a well-known physical model of algorithmic computation. 
Consult Fredkin and Toffoli (1982). In these models, the computations 
themselves are done by billiard balls. 

5. CALCULATING SYSTEMS 

Given T = (Fr ,  H), we want to investigate the ability of a system 
S~Fr to answer questions about other systems in F t .  To do this, first of 
all we must decide what should be meant by a question. We restrict 
ourselves to the following format: Given MeTurA, S ~ F  r, and t~[O, ~], 
what is the output M(S(t))? Technically, it is advantageous to let the 
question be specified by t and M alone. We are then led to the definition 
below. 

Definition 4 (The question set). Let Q = TurA • [0, ~] .  The set Q is 
called the question set associated with deterministic theories. An element 
q~Q is often written q = (Mq, tq). 

As an example, let M~TurA be such that M(w) = 1 iff wi=  0 for some 
i -< 10. Then q = (M, 17) ~ Q represents the question "Are any of the first 
ten coordinates zero at time t = 17?" To ask this question about a system 
SeFr  is to ask for the value of M(S(17)). 

Since for all i~N and x ~ E  there is an MeTurA such that 
Vwe~*(M(w) = l ~ w t = x ) ,  all bits of a given point S(t)e~* can be 
extracted via machines in Tur,~. Thus all information about an arbitrary 
system S in a deterministic theory can be extracted via questions in Q. We 
are now ready to state our formal definition of a calculating system. 
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Definition 5 (Calculating systems). A calculating system C for a deter- 
ministic theory T = (F r, H) is a 4-tuple 

C = (Hc,fc ,  i ~ Outc) 

where 

Hc e Ham( T) 

f c : f~ x f~ -~ f~ 

i ~ Ham(T) x Q --*fl 

Outc ~ Tur A 

such that for all (S, q ) e F r  x Q there is a system C[S, q ] e F r  satisfying 

(i) H(C[S, q]) = Hc 
(ii) C[S, q](0) = ic(S, q) 

where ic: F r x Q ~s is defined by ic(S, q) =fc( i~  q), S(0)). The map 
i c will be called the input map (or the input code) of C. 

Definition 6. Let C be a calculating system for a theory T = (Fr ,  H), 
and let (S, q ) s F  r x Q, with q = (Mq, tq). If 

Outc(C[S , q](oo)) = Mq(S(tq)) 

then (S, q) is called solvable for C. The set of all (S, q)~Fr x Q which are 
solvable for C is called the domain of C, and is denoted by Dc. 

According to this definition, a calculating system C is characterized by 
a fixed Hamiltonian Hc, an output signal Outc, and an input mapping ic. 
The situation where C is calculating the answer to the question q ~ Q about 
S~Fr  is represented by the system C[S, q] ~FT. The answer to the question, 
namely Mq(S(tq)), is given by Outc(C[S, q](oo)). My reason for splitting 
the input map ic into two parts f c  and i ~ is that it will be convenient to 
have the dependence of C[S, q](0) on S(0) under extra control. Assuming 
that C[S, q](0) is allowed to depend on Hs, q, and S(0) only, this split- 
ting represents no loss of generality. To be precise, given a map 
~" Ham(T) x Q • { S ( 0 ) [ S ~ F r } ~ f L  if we choose i ~ injective (which we 
assume can always be done) and put fc(w, z) = ~((i ~ -I(w), z), then 

fc(i~ q), S(0)) = r q, S(0)) 

Most of the results in this article will concern calculating systems 
having input codes of a special type called explicit codes. I will now 
proceed to define this. 
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A strictly increasing map q: A ~ N will be called an initial sequence if 
A = Dom(q)~  N is an initial segment. If  r/ is an initial sequence, there 
exists a unique initial sequence rT: B ~ N  (the complement of  rt) defined on 
an initial segment B ~ N such that 

Im(rl) w Im(fl) = N 

ImO1) ~ Im(s = 0 

Here we adopt the convention that if Im(rl)= N, then ~ is empty, i.e., 
Dora(O) = Im(fl) = 0. Conversely, if Im(q) = 0, then Dom(fl) = N and f / is  
the identity. Now let r/ be an initial sequence. Given a, b~f~, define 
a,(a, b)ef~ as follows: 

[a,(a, b)] ~(i) = a i for all i~Dom(fl) 

[a~(a, b)] ~(i) = b ~ for all i~Dom(rl) 

Here [r b)] k means kth coordinate of  o-~(a, b), in accordance with our 
conventions. I will sometimes write a,(a,  b) k instead of  [o-,(a, b)] k. 

Example 4. Let q : N ~ N  be given by q ( j ) = 2 j  for all jEN.  Then 
f / ( j ) = 2 j - 1  for all j ~ N ,  and Dom(7l) = N .  We have a~(a,b) = 
alblaZb2a3b3 . . . .  

Definition 7 (Explicit input code). Let T = (FT, H)  be a theory, and 
let C = (Hc , f c ,  i~ Outc) be a calculating system for T. The input map ic 
of  C is called explicit if there is an initial sequence q: A ~ N such that 
f c  = ~r,, i.e., such that 

ic(S, q) = a,(i~ q), S(0)) 

for all (S, q) eFT x Q. 

A basic thing to notice about this definition is that the class of  explicit 
input codes is sufficiently rich to contain codes whose maps f c  = am 
conserve all information about i~ q) and S(0). For  instance, the map 
a, considered in Example 4 is conservative in this sense. 

Definition 8 (Universal systems). A calculating system C = 
(Hc , f c ,  i~ Outc) for a theory T = (Fr ,  H) is called a universal system for 
T if 

Dc = F r  x Q 

In other words, a universal system for a theory T is a calculating 
system which can answer any question q~Q about any system S e F r  
correctly. The main result of this article can (in its weakest form) now be 
stated in a mathematically precise form as follows: There exists no closed 
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deterministic theory which has a universal system with an explicit input  
code. The next two sections o f  the paper  are purely mathematical ,  and their 
aim is to prove this theorem. 

6. F R A C T A L  P O I N T S  

Consider  an initial sequence r/: A ~ N ,  and let a ~ : ~  • ~ ~ be the 
map defined above. For  given a, z ~[~ we put  4o = z and 

~i+, = a~(a, ~i) 

for  i = 0, 1, 2, 3 . . . . .  Then  we define 

Frae~(a) = lim ~i 

where lim refers to the ~- topology.  

Lemma 2. Let t/: A -~N be an initial sequence. Then  for  fixed z ~ f l  the 
map Frac~: ~ is well defined, and 

a ,  (a, Frac~ (a)) = Frac~ (a) 

for  all a ~ .  Moreover ,  if t / ( 1 ) >  1, then Frac~ =Frac~2 for  all z l , z 2 ~  
[i.e., Frac~(a) is independent  o f  z]. I f  the complement  o f  ImO1) in N is 
infinite, then the map Frae~: ~-->~ is injective. 

Proof. First assume Dora(q)= 0, where q is the complement  o f  t/. 
Then  t/(i) = i for  all i~N,  so a~(a, b) = b for  all a, b ~ .  It follows trivially 
that  Frae~(a) = z for  all a, z ~ .  We also have )/(1) = 1 and Im(tl) = N. 

Assume now D o m ( q ) # O .  Given a = a l a 2 a 3 . . . ~ ,  construct  
b = b ~ b 2 b 3 . . .  ~ in three stages as follows. 

(i) Fo r  all i < q(1), put  b ~ = z  ~. 
(ii) Put  b q(i) = a i for  all i~Dom(q).  

(iii) Put  b ~(') = b ~ for all i~Dom(tl) (start ing f rom i = 1, recursively). 

Note  that  t/(i) = i . ~  i < q(1), in which case (iii) simply states b * = b". 
I claim that  the sequence ~ defined by a converges to b. T o  see why, we 
prove by induction that  ~,. has the first i coordinates  in c o m m o n  with b. 

I f  q ( 1 ) > l ,  then b l = z  I and ( ~ l ) l = a , ( a , z ) l = a , ( a , z ) ~ ( O = z L  I f  
q(1) = 1, then b ~ = b qO) = a I by (ii), while (~)1  = a~(a, z) ~ = a,(a, z) q~ = 
a ~ also. So the result holds for  i = 1. 

Assume it holds for  i = k, k > 1. We must  prove that  (~k + 1)2 = b j for  
all j~{O . . . . .  k + 1}. 

Case 1. j < q(1). Then  r/(j) = j .  So 

(r + ~).i = a,~(a, ~k) ~ = a,~(a, Ck) "(y) = (r j 



Predictability in Deterministic Theories 1097 

By repetit ion, (~k+ l) j = (~0) j = zL Also, b j = z j by (i). 

Case 2. j = f/(1). Here  we get 

(r  ,)J = a,(a, Ck) j = a,(a, r 

= a  ~ = b0(l) = bJ 

Case 3. j > f/(1). Assume first j r say j = f/(rn). Then  

(r + i) j = a,(a, ek) j = a m = b ~(m) = b j 

Assume next je lm(rl) ,  w i t h j  = r/(rn). We now have m < j ,  so m < k. Then  

(r l) j = an(a, ~k) j = (~k) m 

=_ b m = bq(rn) =. b j 

where I used the induct ion hypothesis  at the third equali ty and  (iii) at  the 
fourth.  Thus  the induct ion is complete.  So FracZ(a)= b. Thus  the m a p  
Frac~:f2--,I'~ is well defined. I f  a,c~f2,  i~Dom(fl), and a i # c  i, then 
[Frac~(a)]O(i)=ai#ci=[Frac~(c)] ~r The  injectivity o f  Frac~ when the 
complemen t  o f  Im(tl) in N is infinite follows directly f rom this, since in tha t  
case Dom(fl) = N. I f  r/(1) > 1, then f/(1) = 1, so the independence o f  b on z 
in this case is trivial f rom the explicit cons t ruc t ion  o f  b given above.  
Finally,  assume that  ieIm(q),  where i =  f/(m). Then,  with b = Frac~(a) as 
before,  we get 

a,(a, b )  i =  a m = b rT(m) = b i 

I f  i~Im(~l), where i = r/(m), then 

a,(a, b )  i =  b m = b n(m) = b i 

So we have a,(a, b) =b.  �9 

Let f20 = {aEf~[(Vi~N)(3j~N)( j  > i ^ a j # 1)}, i.e., let [20 be the set o f  
elements  in f~ which have no infinite sequence o f  repeat ing ones. Fo r  some 
appl icat ions the following result is useful: 

Lemma 3. Let r / be  an initial sequence. I f  z, a~f l0 ,  then Frac~(a)~f~o. 

Proof. By the explicit cons t ruc t ion  o f  FracZ,(a) given in the p r o o f  o f  
L e m m a  2, it follows tha t  if  neither a nor  z contains  any  infinite sequence o f  
repeat ing ones, then Frac~(a) will not  conta in  such a sequence either. �9 

Example 5. Let t/(i) = 2i for  all i e N ,  and let 

a = 0110011101101 . . . .  z = 1101010111001 . . .  
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Then f/(i) = 2 i -  1 for i~N, and 

r = %(a, z) = 01111001001110110111100011 . . .  

~2 = O'r/(a, ~1)  = 00111101011010110010110111 . . .  

33 = O', (a, ~2) = 00101101011 t 10110011110011 . . .  

etc. It turns out that 

Frac~(a) = 00101100011110100011110111... 

Notice that Frac~(a) contains smaller and smaller copies of  itself. Reading 
every second bit, one gets the point Frac~,(a) itself, and reading every fourth 
bit one also gets the same point. And so on. 

7. THE BASIC RESULT 

We are now ready to prove our first nonexistence result concerning 
universal systems. The proof  is typical diagonal argument. 

Theorem 1. There exists no closed deterministic theory which has a 
universal system with explicit input code. 

Proof Assume that T = (F r ,  H)  and C = (Hc, %, i~ Outc) is a 
counterexample. Since Outc~ TurA, there exists a Turing machine M e  Tura 
such that 

{10 if Outc(w)=O 
M(w) = if Outc(W ) = 1 

(we can take M as the negation of  Outc). Let q = (M, oe); then qEQ. Since 
T has a calculating system, it follows that it is nonempty. Choose R~Fr,  
and let 

S 1 = C[R, q] 

(Here 1 is a usual index, it does not indicate first coordinate.) Then 
consider the sequence {Si)p= 1 - F r  defined by 

Si+ 1 = C[S i, q] 

where S ~ F r  is defined above. Let i~N be given. By definition of  C[S f, q], 
we have S t+ 1(0) = ic(S ~, q). Then, since 

H(S') = Hc (1) 
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it follows by Definition 7 that 

S i+ '(0) = i c (S  i, q) 

= a, ( i~  q), Si(0)) 

= a , ( i ~  q), S'(0)) 

From Lemma 2 it now follows that the sequence {Si(0)}~= ~ converges in 
the ~)-topology to the point Frae~(a), where a = i~ q) and z = Sl(0). 
Since T is closed, it follows from (1) that there is a system S ~ F T  such that 

H s = H c  

S(O) = FracZ,(a) 

with a and z defined above. By injectivity of ~bT, the system S is uniquely 
determined by these conditions. Now 

ic(S.  q) = a~(i~ ( g s ,  q), S(0)) 

= a , ( i ~  q), S(O)) 

= a,(a, Frac~(a)) = Frac~(a) = S(O) 

where I used Lemma 2 at the fourth equality. Then we get 

C[S, q] = d? ~-' (He ,  ic(S,  q)) 

= ~ T I ( H s ,  S(O)) = S 

This gives 

M ( S ( ~ ) )  = 0 r Outc(C[S,  q](~)) = 0 

r M(C[S,  q](~)) = 1 

M ( S (  ~ ) )  = 1 

The first equivalence here is because C is universal, the second is by 
definition of M, and the third uses the result derived above. II 

8. AN EXAMPLE FROM CLASSICAL MECHANICS 

Referring to Example 1 in Section 4, let T = (FT, H) be the represen- 
tation of a classical theory | = (Clas, h). We can make the notion of 
~ system" for Clas as considered in Section 3 precise by referring 
to calculating systems for T. A calculating system for T is said to be 
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classical if the following two conditions are satisfied: 

(i) For  all (S, q ) ~ F r  • Q, 

~(C[S, q])2(0) = Z(~(S)(0)) 

(ii) For  all i ~ 2  and all qeQ, we have 

r q]); (0) = ~(C[S', q]), (0) 

for all S, S" eFr  such that H(S) = H(S'). 

Further, we define a classical universal system for T to be a calculating 
system for T which is both classical and universal. 

Theorem 2. Let T = (F r ,  H) be a representation of  O = (Clas, h). If  
for each fixed s ~ Clas the set 

{aeR[(3s'eClas)(h(s') = h(s) ^ s~(0) = a ^ s~(0) = sj(0) for all j # 2)} 

is a closed subset of  R, then T has no classical universal system. 

Proof. Let C = (Hc, fc ,  i~ Outc) be a classical universal system for T 
Let 

r~  = {S~rrle(S)2(O ) ~[0, 1)} 

and let T + = (F  + , H+) ,  where H + is the restriction of  H to F + . Then 
since ~(C[S,q])2(O)e[O, 1) for all ( S , q ) e F r x Q ,  the tuple C + =  
H r i ~ Outc) is a universal system for T +, where i ~ is the restric- c , J c ,  C , 

tion of  i ~ to Ham(T +) x Q. Let i~ be the input map of  C +. Using the 
definition of  X and remembering that X(s(0))~[0, 1) for all seClas, it is 
easily seen that i~ is explicit, with associated sequence 

r/(j) = 4j + 14 

for j e N .  {The coordinates occupied by the a2 bits in x(a) are given by 
fl(j) = 4 j -  2, and when a2e[0, 1) the first four of  these bits code 0001.} 
The remainder of  the proof  is analogous to the proof  of  Theorem 1. In the 
sequence {S;}T= ~ constructed there, we have 

[Si(0)] ~ = [SJ(0)] ~ for all i,j, k e n  

and it follows that ~(S~)n(0)= ~(SJ),(0) for all i, j e N  and all n # 2. In 
other words, only the second component moves. Further, by Lemma 2 the 
sequence {S"(0)}~= ~ converges in the fl-topology to a point p eft ,  and since 
Dec is continuous (Lemma 1), the sequence {~(Si)2(0)}~= i converges in R. 
By the closure condition stated in the theorem combined with Lemma 3 it 
then follows that p e F~ .  �9 
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9. FINITELY DESCRIBABLE SYSTEMS 

So far we have demanded from our universal systems that they are 
able to treat any system S in a given theory. To be reasonable, however, we 
should only require that a universal system can handle cases where the 
input system S can be described (from the point of  view of the determinis- 
tic theory in question) by a finite amount of  information. The finiteness 
condition will be implemented via the notion of  interpreting systems, which 
is to be introduced below. 

A point a eft* is called recursive if there is a Turing machine M e  Tur 
such that M [ 0 0 0 . . . ] ( o o ) = a ,  i.e., such that when starting from input 
w = 000 . . . .  M writes a on the tape. A number t e[0, oo) is called recursive 
if Dec-1(2(t)) is recursive, where 2 is the map defined in Section 3. A 
number re[0,  oo] is called recursive if t = oo or t is recursive considered as 
an element of  [0, oo). A question q = (Mq, tq)~Q is called recursive if tq is 
recursive. Finally, let A ___ N be an initial segment. A map r/: A- - .N  is 
called recursive if it is a total, recursive map from A to N, in the usual 
sense. 

For  each neN ,  define Cut{n}: f ~ f ~  by 

[Cut{n}(w)]'= ' for i < n 
for i > n 

Example: Cut{3}(lOlO01 . . .  ) = 101000 . . . .  It is convenient to define 
Cut { ~ }(w) = w for all wef t .  

By a counting machine will be meant a machine M e  Tur such that for 
all wef~ the following condition is satisfied: 

�9 If M[w] halts, then the output tape of  M (i.e., the tape of  M at the 
halting moment) is of  the form 111 .o.  llOala2a 3 . . . .  

If  M is a counting machine and M[w] halts, we define Num(M[w])eN 
as the number of  elements in the initial group of  ones on the output tape. 
Example: If  M[w] halts with the output tape l l l01d01 . . . .  then 
Num(M[w]) = 3. 

Definition 9 (Interpreting systems). An interpreting system is a pair 
P = (Mi, M2), where M~ e Tur is a counting machine, and where M 2 e Tur 
is such that M2[w](oo)ef~ for all wef t .  

The set of  all interpreting systems will be denoted by 11. Given an 
interpreting system P = (MI, M2), define the map inte:f~-o fl* by 

~M2[Cut{Num(Ml[w])}(w)](~) if M~[w] halts 
inte(w) % 

[ ddd . . . otherwise 
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We now state the definition of our new "weak" version of a calculat- 
ing system. Roughly speaking, these systems are only required to handle 
recursive inputs. 

Definition 10 (Weak calculating systems). A weak calculating system C 
for a deterministic theory T = (Fr,  H) is a 4-tuple C = (hc,fc, i ~ Outc), 
where 

hc : H x H ~ Ham(T) 

f c : f 2 x f l ~  

i~ : Ham(T) x Q ~ f~ 

Outc ~ Tur A 

such that for all (S, q)~Fr x Q and all interpreting systems P, P'  there is 
a system C[S, q, P, P'] ~Fr  satisfying 

(i) H(C[S, q, P, P']) = hc(P, P') 
(ii) C[S, q, P, P'](0) = ic(S, q) 

where the map i c : F T x Q ~ ~ (called the input map of C) is defined by 
ic(S, q) = fc(i~ q), S(0)). 

Definition 11. Let C be a weak calculating system for T = (Fr,  H), 
and let ( S , q ) E F r x  Q. If for all P,P '~ I I  such that inte(ic(S,q))= 
i~ q) and inte,(ic(S, q)) = S(0), we have 

Outc(C[S , q, P, P'](oo)) = gq(S(tq)) 

then (S, q) is called solvable for C. The set of all solvable (S, q) ~ Fr  x Q is 
called the domain of C, and is denoted by D c. 

Given an ordinary calculating system Z = (Hz , f z ,  i~ Outz), we can 
construct a weak calculating system C = ( h c , f c ,  i ~ Outc) by putting 
hc(P, P ' )=  Hz for all P, P'~I-I (constant map), f c  =fz ,  i~ = i~ and 
Outc = Outz. Then Dz c Dc. In general, we can interpret the map hc of a 
weak calculating system as an assignment of different variants of the 
calculating system, corresponding to using different "preprocessing units." 
Each preprocessing unit corresponds to a certain pair of interpreting sys- 
tems, such that hc(P, P') denotes the variant where the preprocessing unit 
representing (P, P') is used. Working with a given pair P = (M0, M;)  and 
P ' =  (M~, M~), we can extract complete information about inte(ic(S, q)) 
and intp,(ic(S, q)) [which are interpreted as i~ q) and S(0), respec- 
tively] from ic(S, q) by performing a finite number of algorthmic steps, 
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as follows: 

1. Find Num(Mo[ic(S, q)]) = n. 
2. Read the first n coordinates of  i t (S,  q), so that 

Wo = Cut{n)(ic(S, q)) is exactly known. 
3. Conclude that intp(ic(S, q)) = M6[wo], where M6 is known. 
4. Find Num(M1 [ic (S, q)]) = m. 
5. Read the first m coordinates of  ic(S,q), so that w l =  

Cut{m}(ic(S, q)) is exactly known. 
6. Conclude that intp.(ic(S, q)) = M][wi], where M't is known. 

We picture that when the above process is completed, the calculating 
system C guesses that intp(ic(S, q)) = i~ q), inte,(ic(S, q)) = S(0), and 
bases its subsequent calculations on these assumptions. What we demand 
of C, then, is that tf  these assumptions happen to be correct, C shall always 
answer the question q about S correctly. For  inputs such that step 1 or 4 
does not halt, we imagine that C never gets past the preprocessing stage. 
No requirements are made on C in these cases. 

Definition 12. A weak calculating system C = (hc,fc, i ~ Outc) with 
f c  = a, is called finitely describable via its own code if there is a Pc ~rI such 
that for all P, P ' e r I  and all recursive qsQ we have 

intec(Cut{n}(i~ P'), q))) = i~ P'), q) 

where n is the cardinality of  Dom(ft) [if Dom(fl) is infinite, then n = m]. 

Note that Cut{n}(i~ P'), q)) is the only information about 
i~ P'), q) available in ic(S, q). The definition states that 
i~ P'), q) should be algorithmically reconstructable from this infor- 
mation alone. The question remains whether i ~ codes (hc(P, P'), q) faith- 
fully, i.e., whether complete information about hc(P, P') and q is contained 
in i~ P'), q). Definition 12 leaves this open. The important point is 
that the class of input codes we consider is sufficiently rich for such a 
faithful coding to be possible. This is certainly the case with the class of  
explicit input codes, since there i~ P'), q) is an arbitrary coding of  
hc(P, P') and q into a point in f~. And if Dom(fl) is infinite, then all 
information about i~ (hc(P, P'), q) is contained in ic(S, q). 

Notice also that a weak calculating system which is both finitely 
describable via its own code and faithfully described by i ~ still can have a 
potentially infinite data storage capacity. Interpreting in terms of classical 
mechanics, it can, for instance, have an infinite number of degrees of  
freedom, with all the "storage" degrees of  freedom being assigned a 
common, trivial initial condition at the start of  each calculation. 
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Definition 13 (Weak universal systems). A weak universal system for 
T = (Fr ,  H)  is a weak calculating system C for T such that Dc = Fr x Q. 

Theorem 3 (Main result). Let T = ( F T ,  H)  be a theory, and let 
r/: A --* N be a recursive initial sequence. Assume that C is a weak calculat- 
ing system for T such t h a t f c  = a,  and such that C is finitely describable via 
its own input code. Then: 

(i) I f  T is closed, C is not universal. 
(ii) I f  ImO1) is finite or empty, C is not universal. 

Proof. Assume that T = (F  r, H)  and C = (hc, a~, i~ Outc) is a coun- 
terexample. Let M = --10utc (the negation of  Outc); then qo = (M, oo) ~ Q. 
Since C is finitely describable via its own code and ~/is recursive, there is 
a Po ~II such that 

inteo(a,(i~ (hc( P, P'), qo), w)) = i~ (hc(P, P'), qo) 

for all P, P ' e I I .  Further, there is a P1 ~I/  such that 

inte~ (a,(i~ (hc(P, P'), qo), w)) = Frac~ (i~ P'), qo))) 

Let Hc = hc(Po, P~). Pick R e F r ,  and construct the sequence {S;}~= i ~ F r  
by putting S 1 = C[R, q0, Po, P~ ] and 

S i +  1 = C [ S  i, qo, Po, Pl] 

for i~N. Then since H(S i) = hc(Po, P1) = Hc, we get 

S'+ 1(0) = a,(i~ qo), S'(0)) = a,(i~ (Hc, qo), S'(0)) 

for ieN.  As in the proof  of  Theorem 1, we obtain a system S e F r  with 
Hs = Hc and S(0) = FracZ~(a), where a = i~ qo) and z = Sl(0). Note 
that if Im(~l) is finite, the sequence {S~}T= ~ is eventually constant. So the 
closure assumption on T is not necessary to ensure S e F r  in the case where 
Im(tl) is finite. We now get 

ic(S, qo) = a,(i~ (Hs, qo), S(0)) 

= a,(a, Frac~(a)) = Frac~(a) = S(0) 

by Lemma 2, and so 

C[S, qo, Po, P~] = q~r' (Hs, ic(S, qo)) = S 

But  

inteo(ic( S, qo)) = inteo(a~(i~ qo), S(0)) 

= i~ qo) (2) 
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FurtheL 

inte ~ (ic(S, qo)) = inte , (an(i~ qo), S(O)) 

s(o) .o = Frac, ( tc(Hs, qo)) 

= Frac s(~ 

Assume first Dom(ft) # O. Then from the explicit construction in the proof 
of  Lemma 2 we get 

[S(0)] t = [Frac ~ (a)]' = z i 

for all i < 6(1), so FracS(~ = Frac~(a) = S(0). If  Dora(6) = 0, then triv- 
ially FracS(~ = S(0) also. So in any case, 

inte, (ic(S, q0)) = S(0) (3) 

Because of (2) and (3), we now get 

M ( S ( ~ ) )  = 0 ~ Outc(C[S, qo, eo, Pl](c~)) = 0 

,*~ M(C[S, qo, Po, Pi](~ = 1 

,~, m(s(oo))  = 1 

as in the proof of Theorem 1. �9 

Theorem 3 was proved by giving the calculating system C an input 
problem (S, q) which was directly related to its own ability to solve 
problems, thus creating self-reference. Interpreting physically, it is impor- 
tant to understand that seen from the inside of C, nothing special needs to 
be noted about the problematic input ic(S, q). It contains a finite amount 
of  information which can be read off in C within a finite amount of time 
and serve as the basis for a calculation. The problem may be very complex, 
but the complexity is finite. Further, if i ~ conserves all information about 
(hc(P, P'), q) and (for instance) both Dorn(~) and Dora(6 ) are infinite, then 
ic(S, q) describes the (S, q) problem correctly. And we know that (i) C is 
free to use any method in its calculations, (ii) C may have an infinite data 
storage capacity, and (iii) there is no time limit on the calculation. Thus 
there is, in this sense, a limit on the possibilities of making predictions 
within a deterministic theory. It is sometimes said (informally) that when 
the state of a system governed by a deterministic physical theory (for 
instance, classical mechanics) is known exactly, one can "in principle" 
answer any question about the future state of  the system. Theorem 3 shows 
that in a certain sense, this is not the case. 
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10. SELF-REFERENCE IN CALCULATING SYSTEMS 

In the proof  of Theorem 3, we started from a given theory T together 
with a calculating system C for T, and proved (using some assumptions on 
C and T) the existence of  two interpreting systems P0, P~ and a system 
S e F r  such that 

C[S, qo, Po, P l ]  = S 

inteo(ic(S, qo)) = i~ qo) (4) 

inte. (ic(S, qo)) = S(0) 

where q0 is the negation of  the output signal Outc. To investigate these 
matters more closely, I will now give (somewhat different) explicit con- 
structions of such S, Po, and P1 in two special cases covered by the 
theorem. 

First Case. Let T = (F r ,  H)  be a deterministic theory, and assume 
that C =(hc ,  a,,  i~ Outc) is a weak calculating system for T, where 
q(j)  = 2j for j e N .  Then #(j)  = 2j - 1 for j e N ,  and both Im(q) and Im(#) 
are infinite. The sequence I/ is recursive. Let M c  e Tur be a counting 
machine such that Mc[w] halts iff w is on the form 

al al aZa2 . �9 �9 amamOlb lb2b3 . . . (5) 

for some m e N ,  in which case Num(Mc[w]) = 2m + 2. Let M'c e Tur be the 
identity, i.e., Mc[w](oo )=w for all weD*. Then Pc = ( M c ,  M'c)  is an 
interpreting system. 

Observation 1. For all wef t ,  intec(W) = w iff w is of the form 

a la laZa2. �9 �9 amamOlO00... (6) 

Proof Left to the reader. �9 

Suppose i~ P'), q) is on the form (6) for all P, P ' e I I  and all 
recursive q e Q. Then C is finitely describable via its own code, Pc being the 
witness system. Let Mo e Tur be a counting machine such that for all w e f l  
the following condition is satisfied: 

�9 If  the point c e D  defined by c ; =  w ~176 for i e N  is of  the form (5) for 
some m e N ,  then Mo[w] halts with Num(Mo[w]) = #(2m + 2). If  r is 
not of  the form (5), then Mo[w] does not halt. 

Let M'oeTur be such that for all wef~ we have M ~ [ w ] ( ~ ) = a ,  where 
a i =  w~176 all i eN.  Then Po = (Mo, Mh) is an interpreting system. 
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Observation 2. If w~f~ is of  the form (6) and z~fl ,  then 

inteo (an(w, z)) = w 

Proof  Left to the reader, m 

Let M ~ T u r  be a counting machine such that for all w6f~ the 
following condition is satisfied: 

�9 If  the point c6f~ defined by c i =  w "(~(~ for i~N is of  the form (5) 
for some m 6N, then M~ [w] halts with Num(Ml [w]) = r/(6(2m + 2)). 
If c is not of the form (5), then M1 [w] does not halt. 

Clearly such a machine exists. Next we use the following: 

Observation 3. Let r /be as before. Then there is an M e  Tur such that 
for all z, w~f]  we have 

M[a,(z,  w)](oo) = Frac~(a) 

where a i =  w ~ for all i~N. 

Proof Left to the reader. [] 

Let M't ~ Tur be a machine that satisfies the condition of  Observation 
3. Then P~ = (M~, M'~) is an interpreting system. Note that the way P~ is 
constructed now, it has the property that inte,(a,(y,  w)) depends only on 
w. I will refer to this as the one-eye property of  P~. 

Observation 4. Let y, w~fl.  If  the point b given by b ~= w ~(') is of the 
form (6), then 

inte~ (a n (y, w)) = Frac~(b) 

Proof  Left to the reader. [] 

Define H c = h c ( P o ,  P~), and construct S 6 F r  as in the proof  of 
Theorem 3. We have ic(S, qo) = S(O), Hs = Hc, and C[S, qo, Po, Pi] = S, 
where qo is the negation of the output signal Outc of  C. Since C is finitely 
describable via Pc, the point i~  qo) is of the form (6). So 

inteo(ic(S, q)) = inteo(a,(i~ qo), S(0))) 

= i~ qo) 

by Observation 2. Let a = i~  qo) and z = S~(O). By Lemma 2, 

[~r~(a, Frac~(a))] ~(~ = [Frac~(a)] ~('> 

= [an(a, Frae~(a))] ~ a' 
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so if w = ic(S, q), then the point c defined by c i =  w "<~ is given by 
c = i~ qo). Thus again since C is finitely describable via Pc, the point 
c is of the form (6). Using Observation 4, 

inte , ( ic( S, q)) = inte ~ (a,(i~ (Hs, qo), S(0))) 

= intel (a, (a, Frac ~ (a))) 

= Frac~(b) 

where we have 

bi= [Frac~(a)]Oo) = a i 

i.e., b = a. So inte~(ic(S, q0))= S(0). In conclusion, we have constructed 
two interpreting systems P0, Pt ~ I / a n d  a system S ~ F r  such that the three 
conditions in (4) hold. 

Second Case. Let T =  (FT, H) be a theory (not necessarily closed), 
and let C = (hc, an, i~ Outc) be a weak calculating system for T, where we 
now assume r /=  0, i.e., f/(j) = j  for all j~N.  Let Pc = (Mc, M'c) be as in 
the first case, and suppose C is finitely describable via Pc, i.e., 

intvc(i~ P'), q)) = i~ P'), q) 

for all P, P 'E H and all recursive q e Q. Notice that since Im(fl) is infinite, 
no Cut operation appears here. Let Po = Pt = Pc, and let Hc = hc(Po, P~). 
Pick R ~ F r ,  and let S t = C[R, qo, Po, Pt]. Define S = C[S ~, qo, Po, Pt]. 
Then Hs = Hc, and 

S(O) = ic(S t, qo) 

= r176 qo), St(0)) = i~ qo) 

Also, 

ic(S, qo) = a, ( i~  qo), S(0)) 

= i~  q0) = S(0) 

So C[S, qo, Po, Pt] = S, as before. We have 

inteo(ic( S, qo)) = intec(i~ (Hc, qo)) 

= i~ qo) = i~ qo) 

and, in the same manner, 

inte, (ic(S, qo)) = i~ (Hc, qo) = S(O). 

Once again, we have constructed S, Po, and Pi such that (4) holds. 



Predictability in Deterministic Theories 1109 

Discussion of the Two Cases. Case 2 is analogous to the construction 
employed in the standard proof of the Halting Theorem for Turing 
machines. It involves using interpreting systems P, P'  such that the given 
initial value ic(S, q) is interpreted both as a coded description of Hs and q, 
and as giving S(0) explicitly. Thus, thinking physically, the assumptions 
are: 

�9 The system C[S, q] can read off (high-level) coded information 
about Hs and q from its initial value C[S, q](0). 

�9 The system C[S, q] can read off the individual bits of its initial value 
C[S, q](0). 

In case 1, the situation is different. Here high-level information about 
Hs and q is coded into a part of C[S, q](0), and the initial value S(0) is 
encoded in the complementary part. So the assumptions are: 

�9 The system C[S, q] can read off coded information about Hs and q 
from a subset of its initial value bits. We may picture this as a 
situation where high-level information about Hs and q is coded into 
a certain physical part of the calculating system. To take an extreme 
example, the information could be given as written text in a book 
contained in the system. However, by the one-eye property of P1, 
the individual bits of the initial value corresponding to this part of 
the calculating system (the low-level description) need not be read- 
able within the system. 

�9 There exists an infinite subset of bits in C[S, q](0) which can be read 
off individually within the system. 

Thus, in a sense, the implicit assumptions about introspective abilities of 
the calculating system are weaker in case 1 than in case 2. 

11. CONCLUDING REMARKS 

It should be emphasized that although our proofs of Theorems 1 and 
3 employ a self-reference diagonal trick, the unpredictability effects de- 
scribed by the theorems need not in general be tied to self-reference of any 
type. Information-theoretically, it seems quite natural that it is impossible 
for a calculating system to treat input systems of complexity comparable to 
(or greater than) its own. However, one should not be fooled by the 
intuition here. Remember that, for instance, a universal Turing machine is 
in a way able to treat itself. Chaitin (1982) discusses diagonal arguments 
versus information-theoretic approaches in the case of Grdel's theorem. 

Anyway, if there is a system S which is unpredictable for C, then from 
an interpretational point of view we must conclude that physical systems 
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which are copies of S are also C-unpredictable. It also seems, for instance, 
reasonable that smaller copies of S are C-unpredictable. This particular line 
of thought, I believe, is interesting, since it is conceivable that such smaller 
copies of S might be contained in C[S, q, P, P'] = S itself. I f  we imagine a 
calculating system as an isolated "world," then in this self-similar case the 
world will contain small, unpredictable fractal subsystems. Further, in 
classical mechanics it is known that when a system is scaled down confor- 
maUy, its time development tends to speed up. With effects of this type, it 
is even possible that the infinity of time involved in the self-referential 
problems we employed in our proofs can be converted into an infinity in 
scale, so that the behavior of the small subsystems is unpredictable in finite 
time as well. To describe this formally, we could add to our deterministic 
theories some extra structure providing analogs of the scaling (and geomet- 
rical union) properties found in classical mechanics. The reason why I find 
it interesting to speculate slightly at this point is that unpredictability 
effects of this type build a theoretical bridge from determinism to indeter- 
minism. One obtains a picture where an underlying deterministic theory 
breaks down on the subjective level and appears in principle indeterministic 
in a given "world." 

I would like to finish by stating three problems concerning generaliza- 
tion of the results in this paper. 

1. The self-reference problem. Let C be a weak calculating system for 
T. Find necessary and/or sufficient conditions on C and T for the existence 
of S e F r  and P, P ' e I I  such that 

C[S, q, P, P'] = S 

inte(ic(S, q)) = i~ (Hs, q) 

inte,(ic(S, q)) = S(O) 

where q = ( 7 0 u t c ,  ~). 

2. The negative universality problem. Find conditions ~ and fl (as weak 
as possible) such that no deterministic theory T satisfying ~ has a weak 
universal system C satisfying ft. 

3. The positive universality problem. Find a condition ~t (as weak as 
possible) such that all deterministic theories T satisfying ~t have a weak 
universal system which is finitely describable via its own code. 

Concerning problem 3, it can be remarked that it is not very difficult 
to construct an example of a nonclosed theory T together with a weak 
universal system C for T such that C has explicit input code and is finitely 
describable via its own code. The proof is omitted. Concerning problems 1 
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and 2, I have shown that  the condit ions on f c  assumed in Theorems i and 
3 can be somewhat  relaxed. Fo r  instance, the monoton ic i ty  assumpt ion on 
the sequence r/defining f c  can, under  quite mild assumptions,  be removed.  
The precise results are omit ted here. 
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